

USB I/O Programming Manual

Delcom Engineering
200 William Street
Port Chester, NY 10573
914-934-5170
914-934-5171 Fax
www.delcom-eng.com

Document Ver 1.6 October 08, 2002

Contents

1.0 Introduction

2.0 Requirements

3.0 Overview

4.0 Device Enumeration

4.1 Device Name Registry Method
4.2 VB Registry Example
4.3 Device Name Enumeration Method
4.4 C Enumeration Example

5.0 Open & Close Communications

5.1 Open Device
5.2 Close Device

6.0 Device Communications
6.1 Device I/O Control
6.2 C Example
6.3 VB Example

7.0 Registry Keys

Appendix A: Related Documents and Web sites

1.0 Introduction

This document describes how to communicate to the Delcom USB
I/O device. Please use this document along with the sample code
available on the web site.

2.0 Requirements

Delcom USB IO Device
Delcom IO USB Driver
USB ready computer running Win98, ME or Win 2000
Microsoft Visual C++ version 4.0 or better, or equivalent 32 bit
compiler for x86 based system, or Visual basic
Knowledge of C or Visual basic

3.0 Overview

To communicate with USB IO Driver one must first enumerate the
device. The enumeration of the device returns a device name. This
device name is used to open the interface, using CreateFile(). Once
you have the handle from CreateFile() you can use DeviceIOControl()
to communicate to the USB IO Device and CloseHandle() to close it.
The hardest part is getting the device name the rest is simply. To send
commands to the USB IO device simply build a command packet and
submit it using the DeviceIOControl functions.

4.0 Device Enumeration:

In order to communicate to the USB device one must first find its
device name. The device name consists of a number representing a
physical port plus the GUID (global unique identifier) for the device.
The current USB port and the GUID are combined to form the device
name. The device name can change each time you plug in an
additional device or plug the device into a different USB port or hub
on your computer.

The GUID for the Delcom USB I/O device is {b5157d69-75f8-11d3-
8ce0-00207815e611}, and a typical complete device name looks like
\\.\0000000000000012#{b5157d69-75f8-11d3-8ce0-00207815e611}.

In Windows XP a typical device name look like
\\.\USB#Vid_0FC5&Pid_1222#000000001#{b5157d69-75f8-11d3-
8ce0-00207815e611}.

4.1 Device Name Registry Method

There are two ways to get the device name. The easiest method is to
read the device name from the registry. When a USB I/O device is
plugged in to your computer, the OS detects it and loads the driver.
When this driver loads the device name is stored in the registry. Then
the user just reads the name out of the registry. This method has one
disadvantage. It can’t be used when more than one USB I/O device is
plugged in to your computer, because only the last device name will
be recorded in the registry.

To use the registry method simply open the registry key, query the
value, and close the registry key. The registry key name is
DeviceName and the path is
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Delcom\USBIODS\Parameters\

You can uses regedit.exe to find the entry. It also a good place to copy
the GUID from so you don’t any mistakes.

4.2 VB Registry Example

Here is an example in Visual Basic on how to read the device name
from the registry.

DIM DeviceName as string
DeviceName = GetRegValue(HKEY_LOCAL_MACHINE, _
 "System\CurrentControlSet\Services\Delcom\USBIODS\Parameters\", _
 "DeviceName")

' GetRegValue - Gets the Key value in the registry given a registry key.
Function GetRegValue(hKey As Long, lpszSubKey As String, szKey As String) As
String

Dim phkResult As Long, lResult As Long
Dim szBuffer As String, lBuffSize As Long

'Create Buffer
szBuffer = Space(255) ' Allocate buffer space
lBuffSize = Len(szBuffer) ' Set the length

RegOpenKeyEx hKey, lpszSubKey, 0, 1, phkResult 'Open the Key, get a
handle to it

lResult = RegQueryValueEx(phkResult, szKey, 0, 0, szBuffer, lBuffSize) 'Query
the value

RegCloseKey phkResult 'Close the Key

If lResult = ERROR_SUCCESS Then
 GetRegValue = szBuffer ‘ return key value
End If
Exit Function

4.3 Device Name Enumeration Method

The second method to get the device name is two use Windows™
device manger. To do this one calls a function in the setupapi.dll.
Simply poll the device manger with the USB I/O GUID for all the
devices that match the GUID given. The device manger will return
the device names for all the devices currently available on your
system. This is the better way of getting the device name. It allows
the user to use multiple devices on the same computer. The draw
back is that it is little more complicated.

4.4 C Enumeration Example

Below is a C example using this enumeration method.

Use the DEFINE_GUID macro to build the GUID.
// {B5157D69-75F8-11d3-8CE0-00207815E611}
DEFINE_GUID(USBIODS_GUID,
0xb5157d69, 0x75f8, 0x11d3, 0x8c, 0xe0, 0x0, 0x20, 0x78, 0x15,
0xe6, 0x11);

This GUID is passed to SetupDiGetClassDevs(), which returns a
handle to the device. The enumeration functions are found in the
setupapi library.

HDEVINFO hinfo = SetupDiGetClassDevs(&USBIODS_GUID, NULL,
NULL, DIGCF_PRESENT | DIGCF_INTERFACEDEVICE);

The first argument identifies the interface you’re looking for. The
flag bits in the last argument indicate that you are looking for the
interfaces exported by the USB I/O device.

Once you have a handle to the device information set, you can
perform an enumeration of all the devices that export the particular
interface you’re interested in. See Microsoft function documentation
for more information on setupapi.dll library functions.

Poll the device manager till there are no matching devices left.
 int i;
 Cstring Devices[10]; // an array of cstrings
 for (DWORD i=0; ; ++i)
 {
 SP_INTERFACE_DEVICE_DATA Interface_Info;
 Interface_Info.cbSize = sizeof(Interface_Info);

// Enumerate device
 if (!SetupDiEnumInterfaceDevice(hInfo, NULL, (LPGUID)

&USBIODS_GUID,i, &Interface_Info))
 {
 SetupDiDestroyDeviceInfoList(hInfo);
 return(i);
 }

 DWORD needed; // get the required lenght
 SetupDiGetInterfaceDeviceDetail(hInfo, &Interface_Info,

NULL, 0, &needed, NULL);
PSP_INTERFACE_DEVICE_DETAIL_DATA detail =
(PSP_INTERFACE_DEVICE_DETAIL_DATA) malloc(needed);
 if (!detail)

 {
 SetupDiDestroyDeviceInfoList(hInfo);
 return(i);
 }
 // fill the device details

detail->cbSize =
sizeof(SP_INTERFACE_DEVICE_DETAIL_DATA);

if (!SetupDiGetInterfaceDeviceDetail(hInfo,
&Interface_Info,detail, needed,NULL, NULL))

 {
 free((PVOID) detail);
 SetupDiDestroyDeviceInfoList(hInfo);
 return(i);
 }

 char name[MAX_PATH];
 strncpy(name, detail->DevicePath, sizeof(name));
 free((PVOID) detail);
Devices[i] = name; // keep a copy of each device name
 } // end of for loop

After this code runs you end up with a list of device names, or NULL
if no devices could be found (i = 0). Each device name will represent
one USB I/O device that is plugged into your computer. If you know
that you will only support one USB I/O device on your system at one
time, you can reduce the enumeration code by dropping the for loop
and only going through the code once. The device name(s) that are
returned from the above code have a port number prefixed to the
original GUID. The port number is related to order of the plug and
play devices on your machine and can not be predetermined. The
device name should look like the following.

\\.\0000000000000012#{b5157d69-75f8-11d3-8ce0-00207815e611}

This is the complete device name one will use in order to
communicate with the USB I/O device.

5.0 Device Communications:
5.1 Open Device
To begin communicating with the USB I/O device you must first
acquire a handle to it. To do this just pass the device name to the
CreateFile() function. This is done in the same manner as opening or
creating a file. If successful, this function will return a handle to the
device. If the device is not plugged in, un-powered, or opened by
another program this function will fail.

HANDLE hUsbDevice = CreateFile(devicename, GENERIC_READ |
GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);

5.2 Device Close
When your application has finished using the device, the device
should be closed. To do this call CloseHandle() with the device
handle. If you do not close the device, you will not be able to access
it again without re-setting the device port.

CloseHandle(hUsbDevice) ;

6.0 Device Communications
6.1 Device I/O Control
The DeviceIOControl() function provides the communication method
between the users and the device. This function accepts CTL_CODES
and users buffers that are passed to the device driver and eventually
the USB device.

 success = DeviceIoControl(hUsbDevice,
 IOCTL_USBIODS_SEND_PACKET,
 &TxPacket, 8+TxPacket->Length,
 &RxPacket, 8,

 &nBytes, NULL);

The CTL Codes are predefined codes that describe the action to take
place. There are many different codes but for our purposes we are
only concerned with the send packet code.

Below is the CTL_CODE generation shown in C.

#define CTL_CODE(DeviceType, Function, Method, Access) (\
 ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method))

#define METHOD_BUFFERED 0
#define FILE_ANY_ACCESS 0
#define FILE_DEVICE_UNKNOWN 0x00000022

// --- //
#define DELCOM_USBIO_IOCTL_VENDOR 0x0800 // Vendor defined

#define IOCTL_USBIO_WRITE_PACKET CTL_CODE(FILE_DEVICE_UNKNOWN, \
 DELCOM_USBIO_IOCTL_VENDOR+10,\
 METHOD_BUFFERED, \

 FILE_ANY_ACCESS)

The above code generates a CTL_CODE of 0x222028. You can just
use this number instead for using the above code, see below. For VB
code use &H222028.

#define IOCTL_USBIO_SEND_PACKET 0x222028 // for C
Const CTL_CODE_SEND_PACKET = &H222028 ‘ for VB

Once you have the CTL_CODE the next step is to make the command
packet. This is a simply structure of which you just set the fields for a
particular command. The fields in the command packet are described
in the USB IO Data Sheet. Simply fill the structure and send it to the
USB device with the DeviceIOControl function. For read commands
the DeviceIOControl function returns the data in the RxPacket. The
length of the sent packet can range from 8 to 16 bytes. The received
packet is always 8 bytes long. The length data member of the send
packet is the length of the data extension. The data extension is only
required by certain commands. If the data extension member is not
being used set the data extension length to zero.

 The packet command structure consists of the following elements.

// Command Packet Structure define in C
typedef struct _ioPacket{

unsigned char Recipient;
unsigned char DeviceModel;
unsigned char MajorCmd;
unsigned char MinorCmd;
unsigned char DataLSB;
unsigned char DataMSB;
unsigned short Length; // length of data extension
unsigned char DataExtension[8];

 } VENDORPACKET,*PVENDORPACKET;

‘ Command Packet Structure define in VB
Public Type PacketStructure
 Recipient As Byte
 DeviceModel As Byte
 MajorCmd As Byte
 MinorCmd As Byte
 DataLSB As Byte
 DataMSB As Byte
 Length As Int ‘ length of data extension
 DataEntension(8) As Byte

End Type

6.2 C Example
This C code example sends the packet and receives the data in the
same packet that was sent to it. On error it returns –1.

int UsbIoCtrl(PVENDORPACKET pPacket)
 {
 ULONG nBytes;
 BOOLEAN Success;

Success = DeviceIoControl(hUsb,
IOCTL_USBIO_WRITE_PACKET,
pPacket, 8+pPacket->Length, pPacket, 8, &nBytes,
NULL) ;

 if(!Success) //|| (nBytes != sizeof(VENDORPACKET)))
 {
 if(Verbose)MessagePopup ("UsbIoCtrl

Error","DeviceIoControl call failed!");
 return(-1);
 }
 else
 return(0);

}

6.3 VB Example
This VB code example sends the packet and receives the data in the
returned value of the function.

'Sends the USB packet to the device
Function SendPacket(ByRef TxPacket As PacketStructure) As PacketStructure
Dim lpResult As Long
Dim RxPacket As PacketStructure

TxPacket.Recipient = 8 ' always 8
TxPacket.DeviceModel = 18 ' always 18

If 0 = DeviceIoControl(hDevice, CTL_CODE_SEND_PACKET, TxPacket,

8+TxPacket.Length, RxPacket, 8, lpResult, 0) Then
 MsgBox "SendPacket() DeviceIoControl Failed."
 Exit Function

End If

SendPacket = RxPacket

End Function

7.0 Registry Keys:
The following is a list of registry keys that the USB I/O driver adds to
the registry. To access the registry, run RegEdit.exe from the
command prompt. The registry keys are located at:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Delcom\US
BIODS\Parameters

 Delcom USB I/O Registry Keys
• DebugLevel Used for debugging should always be zero.
• BootUpTest Used for testing should always be zero.
• DeviceName This string contains the device name of the last

 USB IO device loaded.

Appendix A: Related Documents and Web sites

Universal Serial Bus Specification www.usb.org
Microsoft Development Network www.msdn.microsoft.com
Delcom Engineering Web Site www.delcom-eng.com

